Dependency semantics and composition

Ann Copestake

Computer Laboratory, University of Cambridge

September 5, 2017

Acknowledgments: DELPH-IN people, especially Emily Bender and Guy Emerson.

Outline.

- 1 Preliminaries
- 2 MRS as a semantic graph representation
- 3 DMRS: how to get it and examples
- 4 Compositionality with HPSG-dependencies and DMRS

5 Conclusions

Outline.

1 Preliminaries

- 2 MRS as a semantic graph representation
- 3 DMRS: how to get it and examples
- 4 Compositionality with HPSG-dependencies and DMRS
- 5 Conclusions

Computational compositional semantic representation

- Broad-coverage computational grammars.
- Any human language.
- Aim: capture all the semantically-relevant information in the syntax and inflectional morphology (plus productive derivational morphology).
- Underspecify distinctions that are not reflected in the syntax but are needed for well-formed representation.
- Parsing, realization, reasonable efficiency, statistical ranking, connection with lexical semantics ...
- Work in LFG, TAG, CCG and other approaches but here DELPH-IN (HPSG or HPSGish).

DELPH-IN collaboration (www.delph-in.net)

- Hand-written English Resource Grammar (Flickinger 2000): about 80-90% coverage of 'normal' text.
- NEW Robustness (Packard and Flickinger, 2017).
- Other resource grammars: Jacy (Japanese), GG (German), SRG (Spanish), also varying size grammars for Norwegian, Portuguese, Korean, Chinese ...
- tools for processing (Oepen, Packard, Callmeier, Carroll, Copestake et al), maxent parse/realization selection models (Redwoods Treebanks: Oepen et al 2002, etc)
- Shared semantic representations: Minimal Recursion Semantics (MRS: Copestake et al, 2005) and variants
- Grammar Matrix: Bender et al (2002).
- All Open Source since late 1990s.

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

Very few of the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

modified quantifier

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Very few **of** the Chinese construction companies consulted were even remotely interested in entering into such an arrangement with a local partner.

partitive

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Very few of the Chinese **construction companies** consulted were even remotely interested in entering into such an arrangement with a local partner.

compound nominal

Very few of the Chinese construction companies **consulted** were even remotely interested in entering into such an arrangement with a local partner.

reduced relative

Very few of the Chinese construction companies consulted were **even remotely** interested in entering into such an arrangement with a local partner.

modified modifier

Very few of the Chinese construction companies consulted were even remotely interested in entering into **such an** arrangement with a local partner.

predeterminer

Some of the applications

- Email response (Flickinger, Oepen, et al: YY Technologies)
- Teaching English (Flickinger et al: EPGY, Redbird)
- Machine translation: e.g., Bond et al (2011)
- Information extraction and QA: e.g., MacKinlay et al (2009)
- Ontology extraction: e.g., Herbelot and Copestake (2006)
- Question generation: e.g., Yao et al (2012)
- Entailment recognition: e.g., Lien and Kouylekov (2014)
- Input for distributional semantics: e.g., Herbelot (2013)
- Detection scope of negation: e.g., Packard et al (2014)
- Robot control interface: e.g., Packard (2014)
- Logic to English (for teaching logic): Flickinger (2017)

This talk

- 1 Explain MRS (in a slightly different way from usual)
- 2 DMRS-v2: a variable-free representation that can represent scope. Interconvertible with ERG-MRS, and other semantic representation styles.
- 3 In progress work: doing composition directly in DMRS-v2.

This talk

- 1 Explain MRS (in a slightly different way from usual)
- 2 DMRS-v2: a variable-free representation that can represent scope. Interconvertible with ERG-MRS, and other semantic representation styles.
- 3 In progress work: doing composition directly in DMRS-v2.
- Formalization in terms of graph structures, but concentrate here on intuitive explanation.
- Question for FSMNLP: could we usefully exploit finite-state methods?
- Question for linguists: what examples (English or otherwise) are interesting/challenging?

Outline.

1 Preliminaries

2 MRS as a semantic graph representation

- 3 DMRS: how to get it and examples
- 4 Compositionality with HPSG-dependencies and DMRS
- 5 Conclusions

Predicate calculus as a graph

every(x, black(x) & dog(x), some(y, cat(y), chase(y,x)))

every(x, black(x) & dog(x), some(y, cat(y), chase(y,x)))

- This is one reading of some cat chased every black dog (the other reading to be discussed shortly).
- For now, just interested in scopal relationships: a tree in most logical representation languages (variables later).
- Either use textual argument order (daughter order in trees) or explicit links (ARG1 etc).

Splitting up graphs

- Standard CS trick: convert graph to 'flat' structure by replacing links with identifiers.
 - every(x, black(x) & dog(x), some(y, cat(y), chase(y,x)))
 - I1:every(x,h1,h2), I2:&(h3,h4), I3:black(x), I4:dog(x), I5:some(y,h5,h6), I6:cat(y), I7:chase(y,x) h1=I2,h2=I5,h3=I3,h4=I4,h5=I6,h6=I7
- In MRS, connections via holes (h) and labels (l).
- Loukanova (2017): real variables vs 'memory locations' holes and labels are memory locations.
- But, see later, status of 'real' variables?
- For those familiar with MRS: explicit conjunction for exposition now, but no event variables for this talk.

Underspecification (Hole semantics, MRS)

- Multiple graphs can be represented by a single flat structure with more complex constraints than equality.
- every(x, black(x) & dog(x), some(y, cat(y), chase(y,x))) some(y, cat(y), every(x, black(x) & dog(x), chase(y,x)))
- I1:every(x,h1,h2), I2:&(h3,h4), I3:black(x), I4:dog(x), I5:some(y,h5,h6), I6:cat(y), I7:chase(y,x) h1=I2,h3=I3,h4=I4,h5=I6, h2 and h6 left unspecified.
- If h2=l5 and h6= l7 every(x, black(x) & dog(x), some(y, cat(y), chase(y,x))) If h6=l1 and h2=l7 some(y, cat(y), every(x, black(x) & dog(x), chase(y,x)))
- But more complicated constraints needed in general.

- Use qeq constraints (equality modulo quantifiers) anywhere where scope is partially determined.
- Drop the explicit & and equate labels instead.
- I1:every(x,h1,h2), I2:black(x), I2:dog(x), I5:some(y,h5,h6),
 I6:cat(y), I7:chase(y,x)
 h1 qeq I2, h5 qeq I6
- Body of quantifier always unspecified.
- Quantifier outscopes all instances of its bound variable: left implicit in MRS.

Advantages of MRS 'flattening'

- Underspecify quantifier scope: record readings correctly but avoid exponential number of explicit readings. Simple types for NPs.
- Straightforward basic notion of compositionality: always accumulate 'elementary predications' and qeq constraints.
- Flat structure helpful for certain algorithms, including realization.
- MRS can be scoped (efficiently), and converted to other semantic representations (DRT etc), without further parsing or detailed lexical information.

MRS with explicit roles (cf feature structures)

11:every(x,h1,h2), l2:black(x), l2:dog(x), l5:some(y,h5,h6), l6:cat(y), l7:chase(y,x) h1 qeq l2, h5 qeq l6

```
11:every
                               15:some
   BV: x
                                  BV: y
   RSTR: h1,
                                  RSTR: h5,
12:black
                               16:cat
   ARG1: x,
                                  ARG1: v,
12:dog
                               h5 qeq 16,
   ARG1: x,
                               17:chase
h1 qeq 12,
                                  ARG1: y
                                  ARG2: x,
```

- Conversion to argument names requires general conventions (no detailed thematic roles).
- Generalize between ARG1, ARG2 (in RMRS).

MRS in feature structures

```
[ LBL: hndl <1>
 PRED: every
 BV: ind \langle 2 \rangle
 RSTR: hndl <3> ],
[ LBL: hndl <4>
 PRED: black
 ARG1: <2> ],
[ LBL: <4>
 PRED: dog
 ARG1: <2> ],
[ LBL: <5>
 PRED: some
 BV: ind <6>
 RSTR: hndl <7>],
```

```
[ LBL: <8>
 PRED: cat
 ARG1: <6>],
[ LBL: <9>
 PRED: chase
 ARG1: <6>
 ARG2: <2>],
   [ qeq
     HOLE: \langle 3 \rangle
     LABEL: <4>],
   [ qeq
     HOLE: <7>
     LABEL: <8>]
```

MRS in feature structures

- Encoding via a directed acyclic graph, EPs in a list.
- Things in lowercase (types) may be in a hierarchy, things in capitals (features) cannot.
- Lots of different ways of encoding, standardized for DELPH-IN Matrix grammars, simplified here.
- Main point here: coindexation/reentrancy (shown by <1> etc) instead of variables. i.e., links.
- Hence: 'real' variables are 'memory locations'.
- Conversion to standard representation relies on assumption that anything not linked together is distinct (cf equality between conventional variables).

MRS is (very) useful, but:

- Very difficult to explain/read MRS as used in ERG (ERS). Not an easy target for machine learning approaches.
- Composition constraints: algebra only partially successful.
- Variables are not doing much (memory locations), and complicate algorithms.
- MRS support within DELPH-IN has become tuned to ERG specifics.
- Predicate modifiers.
- One solution: DMRS (DMRS-v2).

ERG MRS

ERG MRS: things I'm not mentioning

- predicate names for words are of the form _chase_v_1
- for constructions, no leading underscore
- character positions are recorded
- events and 'event's (more soon)
- tense, aspect, plurality etc: recorded as attributes of variables

information structure, anaphora

Demos

Michael Goodman

http://chimpanzee.ling.washington.edu/demophin
Ned Letcher
http://delph-in.github.io/delphin-viz/demo/

Woodley Packard: ACE parser/generator

ERG DMRS

DMRS notation for this talk

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline.

1 Preliminaries

- 2 MRS as a semantic graph representation
- 3 DMRS: how to get it and examples
- 4 Compositionality with HPSG-dependencies and DMRS

5 Conclusions

Getting rid of variables

FS encoding shows we can use a graphical representation and don't need variables as such (at least for composition).

every white dog barks every(x, white(x) & dog(x), bark(x)) every(x,h1,), l1:white(x), l1:dog(x), bark(x), h1 qeq l1

Do we need all these nodes? Why not link predicates directly? i.e., can we use semantic dependencies?

Getting rid of variables: the redundant link problem

Remove nodes corresponding to variables, capture semantics by links between predicates.

Dac

But lots of links: every to white every to dog every to bark white to dog white to bark dog to bark

Getting rid of variables: deciding on links

Given a semantic relationship between two or more entities, captured by variables in predicate calculus, need to decide:

- which entities to link (if more than two share a variable)
- direction of the link
- whether/how to combine links with same source-target (relevant for DMRS because of links representing scope).

Canonical linking

But need general motivation, which works thoughout the grammar for every language and without using details of syntax.

Canonical linking: first attempt

Canonical linking via additional variables:

- MRS as used in ERG: almost every predicate is associated with its own variable: every big dog barks loudly Fully scoped form: every(x, big(e1,x) & black(e2,x) & dog(x), bark(e3,x) & loud(e4,e3))
- This allows a canonical link between predicates: each link points to the predicate 'owning' the variable.
- Oepen uses this property for EDS (additional events were partly introduced for this reason).
- Also first Dependency MRS (Copestake 2009).
- But requires lots of 'events', with limited justification.

Canonical linking: functor-argument relationships

Observation: HPSG was partly inspired by categorial grammar.

- Functor-argument relationship for syntax/semantics: COMP, SUBJ, MOD etc are slots to be instantiated.
- Functor is usually the HEAD, except for modifier constructions, and determiners, where two-way selection.
- Hence canonical representation for semantic dependency links (though semantics doesn't always follow syntax).
- Representation not dependent on approach to events, based on underlying HPSG principles, should be adaptable for other frameworks.

Additional events give back-door access ...

 DMRS-v2: looks almost exactly like original DMRS (but undirected EQ links in DMRS-v1 are directed in DMRS-v2).

every white dog barks

bagels, Kim hates

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

every dog probably barks loudly

Kim tries to sleep

the easy editor to please

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DMRS flexibility (maybe ...)

- Link labels can be underspecified (as in RMRS).
- Scopal vs non-scopal modifier: link between modifier and modifiee underspecified in its scopal component.
- Predicate modifiers (possibly MRS as well).
- Non-tree scopal structures:

We could and should talk.

PP-attachment: no crossing condition allows derivation of all possible attachments (at least in simple cases).

Warning: none of this demonstrated on any scale!

DMRS-v2 (in progress)

Same possibility of conversion from ERG-MRS to DMRS.

- Non-trivial grammars using DMRS directly have been created.
- Possible DMRS alternative for the Matrix (Emerson, Bender).
- Natural approach to composition (last part of talk).
- DMRS scoping: much like MRS.

Outline.

1 Preliminaries

- 2 MRS as a semantic graph representation
- 3 DMRS: how to get it and examples
- 4 Compositionality with HPSG-dependencies and DMRS

5 Conclusions

Compositionality and broad-coverage grammars

- Underlying intuition: semantics should 'mirror' syntax, but difficult to achieve in a large-scale grammar.
- Grammar engineering perspective: capture generalizations, limit ad hoc aspects of grammar. Also realization and scopability of *MRS.
- Learnability (human and machine).
- Traditionally, HPSG has allowed great flexibility in syntax-semantics relationship.
- MRS algebra (Copestake et al, 2001; Copestake (2007): tried to constrain composition, but not fully successful.
- Discussion of MRS compositionality (and contrast with AMR) in Bender et al (2015: IWCS).

Compositionality in DMRS

- Intuition: extract syntactic dependencies from an HPSG, look at exceptions to isomorphism with DMRS.
- Intuition: lexical exceptions OK (multiword expressions).
- Model what is actually done in HPSG/DELPH-IN/Matrix in semi-formal DMRS/dependency notation, and then see what constraints could be feasible.
- Abstract away from details of the feature structure grammars.
- Follow original algebra in limiting access to *MRS: LTOP (scope), INDEX (individuals) and XARG.

Stage 1: initialize elements

Complexities: lexemes with null semantics or complex semantics; construction predicates; multi-word expressions.

- I = INDEX, L = LTOP
- EQ, NEQ and UEQ links select INDEX
- INDEX of phrase comes from HEAD
- LTOP comes from HEAD (except for scopal modifiers etc)
- syntax links dropped when saturated

Stage 2: every white dog

Only semantically relevant selection is SPEC.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

 LTOP on quantifiers is a choice point.

Stage 2: every white dog barks

UEQ on ARG1 from verb because could be in a relative clause.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Stage 2: every white dog barks

- UEQ specialised to NEQ
- Restrictive relative (dog which sleeps) would be ARG1/EQ

XARG

XARG: Kim tries to sleep

probably barks loudly

DMRS (unlike MRS) allows: probable(bark(e,x) & loud(e)) from ((probably barks) loudly) Not so interesting for English but relevant for other languages.

easy editor isn't easy ...

- Analysis based on Flickinger and Nerbonne (1992).
- Makes use of the transferrable subcat principle.
- May not want to allow this!

Constraints

- Current status: trying to work out best notation and putative constraints before implementation.
- Plan is to work out consequences with smaller grammars and (eventually, maybe) do a native DMRS version of the ERG.
- May not be 'nice' constraints:
 - Constraints of the form 'no more than four'.
 - Possible that constraints are (partly) language-specific.
 - Violations might be statistical: not that something never happens, but that it is rare.
- Incremental (strictly left-to-right) DMRS composition looks possible but raises additional challenges.

Outline.

1 Preliminaries

- 2 MRS as a semantic graph representation
- 3 DMRS: how to get it and examples
- 4 Compositionality with HPSG-dependencies and DMRS

5 Conclusions

Conclusions

- Introduced MRS, DMRS-v2, DMRS composition.
- Emphasis of the current work is on doing things with large-scale resources: empirical investigation combined with theoretical investigation.

- Composition constraints at an early stage.
- Questions:

Conclusions

- Introduced MRS, DMRS-v2, DMRS composition.
- Emphasis of the current work is on doing things with large-scale resources: empirical investigation combined with theoretical investigation.
- Composition constraints at an early stage.
- Questions:
 - Could we usefully exploit finite-state methods?
 - What examples (English or otherwise) might be interesting/challenging?