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Motivation of  the Study

‣ Wiktionary: morphological inflection tables for 
many languages

‣ Wiktionary Morphological Database: 350 
languages
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Motivation of  the Study
‣ Forsberg and Hulden (2016): a method to convert 

morphological inflection tables into unweighted 
and weighted finite transducers for parsing and 
generation
- Evaluated on German, Spanish, Finnish
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Inflection examples

drink
drank
drunk

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1
x1 ed

x1 ed

x1
x1 ed

x1 ed

x1
x1 ed

x1 ed

swim
swam
swum

jump
jumped
jumped

climb
climbed
climbed

f1 f2

(a) inflection tables

(b) paradigms

(c) collapse paradigms

Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , x

n

), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn

that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2! x1 a x2, with some constraints
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Generalization from inflection tables

Inflection examples

drink
drank
drunk

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1 i x2
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x1 u x2
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swim
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swum

jump
jumped
jumped

climb
climbed
climbed
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(a) inflection tables

(b) paradigms

(c) collapse paradigms

Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , x

n

), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn

that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2! x1 a x2, with some constraints
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ring
rang
rung
rings
ringing

inflection table

The common parts (stem) are calculated by extracting the 
Longest Common Subsequence from related forms

Generalization

*Ahlberg, Forsberg, Hulden (2014, 2015)
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r i  ng
r a ng
r u ng
r i  ng s
r i  ng ing

inflection table

The common parts (stem) are calculated by extracting the 
Longest Common Subsequence from related forms

Generalization

*Ahlberg, Forsberg, Hulden (2014, 2015)
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inflection table

The common parts (stem) are calculated by extracting the 
Longest Common Subsequence from related forms

Generalization

*Ahlberg, Forsberg, Hulden (2014, 2015)

LCS = rng
r i  ng
r a ng
r u ng
r i  ng s
r i  ng ing
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inflection table

The common parts (stem) are calculated by extracting the 
Longest Common Subsequence from related forms

Generalization

*Ahlberg, Forsberg, Hulden (2014, 2015)

LCS = rng
x1 = r 
x2 = ng

r i  ng
r a ng
r u ng
r i  ng s
r i  ng ing
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LCS = rng “paradigm”inflection table

Generalization

Formal claim: the common parts (stem) are calculated by extracting 
the Longest Common Subsequence from related forms*

*Ahlberg, Forsberg, Hulden (2014, 2015)

x1 = r 
x2 = ng

x1 + i + x2 
x1 + a + x2 
x1 + u + x2 
x1 + i + x2 + s 
x1 + i + x2 + ing 

x1 x2

r i  ng
r a ng
r u ng
r i  ng s
r i  ng ing
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Generalization

ring
rang
rung
rings
ringing

Inflection tables Paradigms
x1+i+x2

x1+a+x2

x1+u+x2

x1+i+x2+s
x1+i+x2+ing

jump
jumped
jumped
jumps
jumping

drink
drank
drunk
drinks
drinking

Collapsed

x1

x1+ed
x1+ed
x1+s
x1+ing

x1+i+x2

x1+a+x2

x1+u+x2

x1+i+x2+s
x1+i+x2+ing

x1+i+x2

x1+a+x2

x1+u+x2

x1+i+x2+s
x1+i+x2+ing
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From paradigm to FST

drink
drank
drunk

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1 i x2
x1 a x2
x1 u x2

x1
x1 ed

x1 ed

x1
x1 ed

x1 ed

x1
x1 ed

x1 ed

swim
swam
swum

jump
jumped
jumped

climb
climbed
climbed

f1 f2

(a) inflection tables

(b) paradigms

(c) collapse paradigms

Figure 1: Generalizing inflection tables into
paradigm functions: (1) a number of complete in-
flection tables are given; (2) the aligned Longest
Common Subsequence is extracted; (3) resulting
identical paradigms are merged. If the resulting
paradigm f1 is interpreted as a function, f1(shr, nk)
produces shrink, shrank, shrunk.

Robins, 1959; Matthews, 1972; Stump, 2001). In
particular, we assume a model where a single func-
tion generates all the possible inflected forms of a
group of lemmas that behave alike. This approach
has earlier been seen as an alternative to finite-state
morphology, and the functions that model inflec-
tional behavior have been hand-built in much pre-
vious work (Forsberg and Ranta, 2004; Forsberg
et al., 2006; Détrez and Ranta, 2012). Here, we
assume the recent model of Ahlberg et al. (2014)
and Ahlberg et al. (2015), which work with a sys-
tem that automatically learns these functions that
model inflection tables from labeled data.

The purpose of modeling inflection types as func-
tions is to be able to generalize concrete manifesta-
tions of word inflection for specific lemmas, and to
apply those generalizations to unseen word forms.
The generalization in question is performed by ex-
tracting the Longest Common Subsequence (LCS)
from all word forms related to some specific lemma
and then expressing each word form in terms of
the LCS (Hulden, 2014). The LCS in turn is bro-
ken down into possibly discontiguous sequences
that express parts of word forms that are variable
in nature. Figure 1 shows a toy example of four
inflection tables generalized into variable- and non-
variable parts by first extracting the LCS, express-
ing the original word forms in terms of this LCS,
and then collapsing the resulting functions that are
identical. The resulting representation, which is es-
sentially a set of strings which have variable parts
(x1, . . . , x

n

), and fixed parts (such as i, a, u) that

can be used to generate an unbounded number of
new inflection tables by instantiating the variable
parts in new ways and concatenating the variables
and the fixed parts.

This learning method often produces a very
small number of functions compared with the num-
ber of complete inflection tables that have been
input—obviously, because many lemmas behave
alike and result in identical functions. We note that
the output of this procedure is human-readable, i.e.
it can be inspected (even in real-world scenarios)
for correctness and also hand-corrected in case of
noise in the learning data. In the current work, we
use these functions as the backbone of a generative
model and implement them as transducers that can
be run in the inverse direction to map fully inflected
forms into their lemmas and morphosyntactic de-
scriptions.

2.1 Paradigm functions

The variables x1, . . . , xn

that are used in the
paradigm function representation capture possible
inter-word variation. This means that each lemma
that gives rise to an inflection table can be directly
represented as simply an instantiation of the vari-
ables, together with the inflection function. As seen
in Figure 1, the function f1 learned from the inflec-
tion tables swim and drink can be used to represent
some other word, e.g. sing by instantiating x1 as s
and x2 as ng.

As we collect a large number of inflection ta-
bles, many of which result in identical paradigms,
we can also collect statistics about the variables
involved and how they were assumed to be instan-
tiated in the original table. For example, from the
truncated tables in Figure 1, we can gather that
f1 has witnessed x1 as both dr and sw, and x2

as nk and m. These statistics can be used to turn
the learned functions into a restricted generative
model that produces entire inflection tables, but
also taking advantage of how variables tend to be
instantiated in that paradigm function.

Additionally, since each possible inflected form
consists of the same variables, we can also define a
string-to-string mapping between any two related
forms, where the content of the variable parts stay
fixed, and the non-variable parts change. For ex-
ample, in Figure 1, we know that we can, for some
verbs, go from the past participle (e.g. drunk)
to the past (e.g. drank) by a string transforma-
tion x1 u x2! x1 a x2, with some constraints
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From paradigm to FST

Lemmatization

jump
jumped
jumped
jumps
jumping

x1  
x1 + ed 
x1 + ed 
x1 + s 
x1 + ing 

infinitive
simp past
past part
simp pres 3sg
pre part
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From paradigm to FST
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From paradigm to FST
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From paradigm to FST

jump
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jumped
jumps
jumping

Add inflection information
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45
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jumped > jump[V;PST]

x1  
x1 + ed 
x1 + ed 
x1 + s 
x1 + ing 
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From paradigm to FST

rely
relied
relied
relies
relying

More lemmatization and analysis example
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

4 5 6 7
ε: V;PST                <i:y>

3

x1 + y 
x1 + ied 
x1 + ied 
x1 + ies 
x1 + ying 
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Building the analyzer
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x1 + i→0 + x2 + o→ar

Paradigm avenir
Rule: pres part → inf

Paradigm negar
Rule: 1p sg pres → inf

x1 + i e + x2 + iendo x1 + i 0 + x2 + o

Figure 3: Paradigm functions generalized from in-
flection tables provide a mechanism for mapping
an inflected form to any other inflected form. Illus-
trated here are two rules extracted from different
Spanish verb paradigms showing a string-to-string
mapping from the participle to the infinitive, and
from the first person singular present form to the
infinitive. Also shown are the variable parts of
the paradigms x1 and x2 and how they have been
instantiated in the training data.

(⌃+)| {z }
x1

(i :✏) e g|{z}
x2

(o :ar[1sg pres ind]) (3)

The transducer corresponding to the expression
is seen in Figure 2, and will generalize to words
that fit the variable pattern, e.g. ciego! cegar.

Each inflection form of every paradigm is con-
verted in such a manner to a transducer that maps
that single inflection to its lemma and morphosyn-
tactic description. All such individual transducers
can then be unioned together for every form in
every paradigm:

f1 [ f2 [ . . . [ f1 [ . . . [ f

m

(4)

5 Prioritizing analyses
The above formulation, though it already produces
a working transducer that generalizes to unseen
forms, can be refined further. First, if a word form
matches the original variables seen exactly, it may
be superfluous to return extra analyses from other
paradigms that the word form might also fit. Sec-
ondly, it may be the case that we have overcon-
strained some variable with the heuristic described

Analysis: peleaste

O pelear [pers=2 number=sg tense=past mood=ind]

C

peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]

U

peleaster [pers=3 num=sg tense=pres mood=ind]
peleastar [pers=1 num=sg tense=pres mood=subj]
peleastar [pers=3 num=sg tense=pres mood=subj]
peleastir [pers=3 num=sg tense=pres mood=ind]
pelear [pers=2 num=sg tense=past mood=ind]
pelastir [pers=3 num=sg tense=pres mood=ind]
pleastir [pers=3 num=sg tense=pres mood=ind]

Analysis: aceleran

O ??? ???

C acelerar [pers=3 num=pl tense=pres mood=ind]
acelerir [pers=3 num=pl tense=pres mood=subj]

U

acelerar [pers=3 num=pl tense=pres mood=ind]
aceler [pers=3 num=pl tense=imp-ra mood=subj]
acelerir [pers=3 num=pl tense=pres mood=subj]
acelerer [pers=3 num=pl tense=pres mood=subj]
acelrir [pers=3 num=pl tense=pres mood=subj]
acelir [pers=3 num=pl tense=imp-ra mood=subj]
aclerir [pers=3 num=pl tense=pres mood=subj]

Table 2: Example of the tri-level analyses pro-
duced by the unweighted system: here the three
sub-grammars (Original = O, Constrained = C,
Unconstrained = U) each allow for successively
more analyses. The word peleaste ‘quarrel’ has
been seen in the training data and thus receives an
analysis from the constrained analyzer, whereas
aceleran ‘accelerate’ has not and only receives
parses from C and U.

earlier, and so return no analyses at all, motivating
a potential relaxation of the constraints on variable
shapes.

To provide a ranking of the analyses in the un-
weighted analyzer, we actually generate a layered
approach with three different models:

• Original: an analyzer where each x

i

must
match exactly some shape seen in training
data.

• Constrained: an analyzer where variables are
constrained as described above.

• Unconstrained: an analyzer where there are
no constraints on variables, except that they
must be at least one symbol long, i.e. match
⌃+.

The three analyzers can be joined by a “prior-
ity union” operation (Kaplan, 1987), in effect pro-
ducing a single analyzer that prioritizes more con-
strained analyses, if such are possible: Original
[

P

Constrained [
P

Unconstrained.

46

m transducers

Analyzer =

analyzers analyzers

Paradigm 
————— 
x1+i+x2 

x1+a+x2 

x1+u+x2 

x1+i+x2+s 
x1+i+x2+ing

Paradigm 
————— 
x1 

x1+ed 

x1+ed 

x1+s 
x1+ing
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From paradigm to FST

jumped > jump[V;PST]

0 1@
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2<i:e> 3@
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5<e:r> 6<n:0> 7<d:0> 8<o:0> <e:ε> <d:ε>
9

ϵ
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ϵ:type=participle
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ϵ:]

Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:
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3 4 5 6
ε: V;PST                
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

4 5 6 7
ε: V;PST                <i:y>

3

verified 

verify[V;PST] 
verifi[V;PST] 
…

tried 

try[V;PST] 
tri[V;PST] 
…

died 

dy[V;PST] 
di[V;PST] 
die[V;PST] 
…
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blargashed 
1. blargash[V;PST] 
2. blargash[V;V.PTCP;PST] 
3. blargashe[V;PST] 
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x1  
x1 + ed 
x1 + ed 
x1 + s 
x1 + ing 

jump
jumped
jumped
jumps
jumping

Infer a language model!

24

Language models over variables (WFSTs)
infinitive
simp past
past part
simp pres 3sg
pre part

jump 
watch 
look 
listen 
work 
ask 
…
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From paradigm to WFST

jump
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jumped
jumps
jumping
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jumped > jump[V;PST]n-gram model
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

ε: V;PST/0.0               LMX1

x1

ε:[/0.0 ε:]/0.0
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From paradigm to WFST
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Figure 2: Examples of two single generalized word forms mapped to lemmas followed by morphosyntactic
description. The parts that correspond to constraints of the variables x1 and x2 are marked. Transitions
marked @ are identity transduction ‘elsewhere’ cases, matching any symbol not explicitly mentioned in
the state.

Inflection table Paradigm MSD Inflection table Paradigm MSD

avenir x1+e+x2+ir infinitive negar x1+x2+ar infinitive
aviniendo x1+i+x2+iendo pres part negando x1+x2+ando pres part
avenido x1+e+x2+ido past part negado x1+x2+ado past part
avengo x1+e+x2+go 1sg pres ind niego x1+i+x2+o 1sg pres ind
avienes x1+ie+x2+es 2sg pres ind niegas x1+i+x2+as 2sg pres ind

Table 1: Two partial Spanish verb inflection tables generalized into paradigm functions. The segments
that are part of the longest common subsequence, which are cast as variables in the generalization, are
shown in boldface in the inflection tables.

string, but also edge positions of the string. First,
we examine the whole string, and if that fails to
yield the conclusion that the variable is ‘fixed’, we
find the longest prefix and suffix which can be as-
sumed to be fixed by the same measure. With this
we construct a regular expression that models the
variables as follows:

1. (w1[w2[ . . .[w

n

) if the variable is assumed
to be fixed, where the w

i

s are the complete
strings seen as instantiations.

2. (p1 [ . . . [ p

n

)⌃⇤ \ ⌃⇤(s1 [ . . . [ s

n

), if
both prefixes and suffixes can be constrained;
here the p

i

s correspond to the prefixes of the
maximal length that can be assumed to be
drawn from a fixed set of types, and the s

i

s
the suffixes.

3. (p1[ . . .[p

n

)⌃⇤ if only prefixes appear fixed.

4. ⌃⇤(s1[ . . .[ s

n

) if only suffixes appear fixed.

5. ⌃+ otherwise.

In the above, ⌃ represents all the symbols seen
in the training data. Under this formulation, the

variables in the avenir paradigm in Figure 3 yield
the following regular expressions:

x1 = (⌃⇤
v) x2 = n (2)

4 Deriving morphological analyzers

Once we have the constraints in place, they can
be used to construct larger regular expressions that
reflect mappings from a specific word form to a
lemma together with the MSD. We convert each
inflection form in a paradigm to a regular expres-
sion that permits the above variable values in place
of x1, . . . , xn

, and that maps the remaining fixed
strings to other fixed strings, depending on what
kind of application is needed.

For example, to create a regular expression for
mapping the 1p pres ind-form (exemplified by
niego) to the lemma form in Table 1, we proceed
as follows: we construct a transducer that repeats
the x1 and x2-variables, possibly subject to the con-
straints on their shape, and maps an i to the empty
string and o to ar. Since x1 is not constrained in
the paradigm, while x2 is constrained to always be
the string eg, this produces the following regular
expression:

45

ε: V;PST/0.0               LMX1

x1

ε:[/0.0 ε:]/0.0
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Example analysis (weighted)

verified

rank log_prob paradigm variables lemma mst

1 -11.44 p4_unmarry (1=verif) verify [V;PST]

1 -11.44 p4_unmarry (1=verif) verify [V;V.PTCP;PST]

2 -18.36 p1_dribble (1=verifi) verifie [V;PST]

2 -18.36 p1_dribble (1=verifi) verifie [V;V.PTCP;PST]

3 -30.49 p20_preempt (1=verifi) verifi [V;PST]

3 -30.49 p20_preempt (1=verifi) verifi [V;V.PTCP;PST]
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Example analysis (weighted)

verified

rank log_prob paradigm variables lemma mst

1 -11.44 p4_unmarry (1=verif) verify [V;PST]

1 -11.44 p4_unmarry (1=verif) verify [V;V.PTCP;PST]

2 -18.36 p1_dribble (1=verifi) verifie [V;PST]

2 -18.36 p1_dribble (1=verifi) verifie [V;V.PTCP;PST]

3 -30.49 p20_preempt (1=verifi) verifi [V;PST]

3 -30.49 p20_preempt (1=verifi) verifi [V;V.PTCP;PST]
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Example analysis (weighted)
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Example analysis (weighted)

33
verified

rank log_prob paradigm variables lemma mst

1 -11.44 p4_unmarry (1=verif) verify [V;PST]

1 -11.44 p4_unmarry (1=verif) verify [V;V.PTCP;PST]

2 -18.36 p1_dribble (1=verifi) verifie [V;PST]
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Both are correct
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Outline

‣ Motivation of the Study

‣ How the Morphological Analyzer works

‣ Data

‣ Evaluation and Result
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Data

‣ Wiktionary Morphological Database
‣ UniMorph project (https://unimorph.github.io/

index.html)

‣ 55 Languages

‣ 19 Language groups

‣ 10 scripts
35
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Evaluation Task
‣ Lemmatization and morphosyntactic information 

tagging

‣ 90% for training; and 10% for test (unless less than 
50 inflection tables)

‣ The evaluation data is disjoint from the training data

‣ The first-ranked analyses

‣ Recall
- lemma
- lemma + POS
- lemma + MST
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Result
‣ Paradigms are extracted successfully for all languages.
‣ Lemmatization recall: 

- Low end: 0% (Basque)
- High end: 97.5% (Hindi)

‣ Lemma-POS recall:
- Low end: 0% (Basque)
- High end: 97.0% (Hindi)

‣ Lemma-tag recall:
-  Low end: 0% (Basque)
- High end: 96.9% (Hindi)

39
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Result Overview: Lemma Recall
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Result Overview: Lemma Recall < 30%
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Result Overview: Lemma Recall > 95%
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Result Overview: Lemma+POS Recall
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Result Overview: Lemma+Tags Recall
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Overview: #Tables/#Paradigms
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‣ The results seem to correlate strongly with the amount and 
representativeness of available data.
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Wrap-up

‣ Simple method to construct weighted FST 
from labeled data

‣ Robust performance for inflectional 
morphology

‣ Large representative data is critical for the 
performance.
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Thank You
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