
Multi-tape Computing with Synchronous
Relations

Christian Wurm & Simon Petitjean

University of Düsseldorf, Germany

Umea, 05.09.2017

Multi-tape Computing with Synchronous Relations

There are many motivations for using multi-tape transducers:

I We want to relate more than two aspects of a language: e.g.
semantics, morphology, phonology, phonetics.

I We want to keep track of intermediate steps in composition
of relations: e.g. in old language reconstruction.

I We want to relate more than two languages.

I ...

Multi-tape Computing with Synchronous Relations

However, multi-ary relations are not usually supported by standard
libraries, and behave differently from binary relations in some ways.

Our solution
Our solution is to encode multi-ary relations as binary/unary
relations.

However, in general, we cannot encode arbitrary rational
(transducer recognizable) relations as unary relations (see below).
But this is possible with the synchronous rational relations (SR).

Multi-tape Computing with Synchronous Relations

Synchronous rational relations are in a sense a largest subclass of
the rational relation, which forms a Boolean algebra.
Hence:

I Closure under intersection, complement (contrary to rational
relations)

I Consequently: decidability inclusion and equivalence of two
relations (contrary to rational relations)

I Closure under generalized (lossless) composition, i.e. match-
ing of one or more components, with and without cancelling
out.

Multi-tape Computing with Synchronous Relations

Problem: Synchronous rational relations are inconvenient to use
for the community:

I Rational expressions (as in FOMA [Hulden, 2009]) do not
allow to characterize SR.

I Solution: we describe a class of expressions which exactly
characterizes SR.

Multi-tape Computing with Synchronous Relations

Problem: Synchronous rational relations are inconvenient to use
for the community:

I (Synchronous) multi-tape relations are not supported by stan-
dard libraries

I Solution: we implement an interface which translates SR-
expressions to regular languages, faithfully encoding all opera-
tions. These can be handled by standard libraries.

Outline

Problems of rational relations

Synchronous rational relations

The encoding: synchronous factorizations

The implementation

Outline

Problems of rational relations

Synchronous rational relations

The encoding: synchronous factorizations

The implementation

Problems of rational relations

Rational relations
A relation is rational if it is denoted by some rational expression
Fix an arbitrary alphabet Σ and an arbitrary arity n

I for a1, ..., an ∈ Σ ∪ {ε}, (a1, ..., an) is a rational expression
(denoting {(a1, ..., an)})

I if e, f are rational expressions, then so is e · f (denoting com-
ponentwise concatenation of tuples),

I if e, f are rational expressions, then so is e + f (denoting
union)

I if e is a rational expressions, then so is e∗ (denoting 1 + e +
(e · e) + ..., where 1 = {(ε, ..., ε)}

Problems of rational relations

Rational (transducer recognizable) relations are extremely useful in
NLP. This is based on a number of properties:

I Closure under composition

I Closure under union

I Closure under concatenation and Kleene star

Each of these operations is very useful, because it allows to
construct a complex relation by simpler ones by means of the
operations. Closure ensures we still have finite-state transducers
effectively computing the relation.

Problems of rational relations

Problems
Rational relations are not closed under intersection (for proof, see
[Berstel, 1979]), and consequently not under complement.

I libraries as FOMA have a pseudo-intersection operation, but
it is not guaranteed to yield a mathematically correct result

I without intersection and complement, we cannot decide whether
two transducers compute the same relation.

I all existing libraries for transducers and rational relations only
support binary relations

Outline

Problems of rational relations

Synchronous rational relations

The encoding: synchronous factorizations

The implementation

Synchronous rational relations

Convolution (tuple of strings)

Put Σ⊥ := Σ ∪ {⊥}, for ⊥/∈ Σ.
The convolution of a tuple of strings (w1, ...,wi) ∈ (Σ∗)i , written
as

⊗(w1, ...,wi),

is in ((Σ⊥)∗)i and of length max({|wj | : 1 ≤ j ≤ i}), defined as
follows: the kth letter-tuple of ⊗(w1, ...,wi) is 〈σ1, ..., σi 〉, where
σj is the k-th letter of wj provided that k ≤ |wj |, and ⊥ otherwise.

Synchronous rational relations

Convolution (relation)

The convolution of a relation R ⊆ (Σ∗)i is defined by
⊗R := {⊗(w1, ...,wi): (w1, ...,wi) ∈ R}.

Synchronous regular relations

A relation R ∈ (Σ∗)i is synchronous regular, if there is an ε-free
finite-state automaton with transitions labelled by (Σ⊥)i

recognizing ⊗R.

Example

((a, a) · (a, ε))∗ /∈ SR, because no ε-free transducer recognizes

{(a2n, an⊥n) : n ∈ N0}

Why Synchronous rational relations?

Largest natural subclass

The class SR is the largest known natural class smaller than the
rational relations.

Advantages of SR

I SR has a number of important closure properties: composi-
tion, projection, cylindrification (see below)

I In particular, SR is a Boolean algebra, hence inclusion and
equivalence are decidable!

I But: SR is not closed under concatenation and Kleene star!

I We will use the fact there is an interesting correlation be-
tween SR and the regular languages.

Synchronous rational relations: operations

Projection

We define for i ≤ n, R ⊆ (Σ∗)n,
πi (R) = {(w1, ...,wi−1,wi+1, ...,wn) : (w1, ...,wn) ∈ R}

Cylindrification

For i ≤ n + 1, R ⊆ (Σ∗)n,
Ci (R) = {(w1, ...,wi−1, v ,wi , ...,wn) : v ∈ Σ∗, (w1, ...,wn) ∈ R}

Homomorphisms

h : (Σ∗)n → (T ∗)n is a homomorphism, if
h(w1, ...,wn) = (h(w1), ..., h(wn)), and h(aw) = h(a)h(w).
h is a relabelling, if a ∈ Σ implies h(a) ∈ T .

Synchronous rational relations: operations

Composition and generalized composition

These operations are not among the standard finite-state
operations. But: together with Boolean operations, they allow to
define

I Relation composition ((a, b) ◦ (b, c) 7→ (a, c))

I Lossless relation composition ((a, b)⊕ (b, c) 7→ (a, b, c))

I Generalized composition of relations of higher arity (matching
more than one component, e.g. (a, b, c) ◦2 (b, c , d) 7→ (a, d))

I Same for lossless composition e.g.
(a, b, c)⊕2 (b, c , d) 7→ (a, b, c , d))

Synchronous rational relations

Closure properties of SR

1. Boolean closure: f R,S ⊆ (Σ∗)n, R, S ∈ SR, then (Σ∗)n −
R,S ∪ R, S ∩ R ∈ SR.

2. Projection/Cylindrification: If R ⊆ (Σ∗)n, R ∈ SR, then
πi (R),Ci (R) ∈ SR.

3. Generalized (lossless) composition: If R ⊆ (Σ∗)m, S ⊆ (Σ∗)n,
o ≤ m, n, then if R,S ∈ SR, then R ◦o S ,R ⊕o S ∈ SR.

4. Relabelling: If R ∈ SR, h a relabelling, then h[R] ∈ SR. If h
a homomorphism, then h[L] ∈ R (the rational relations).

Synchronous rational relations

Problem: concatenation and star
SR lacks closure under concatenation and Kleene star
if R, S ⊆ (Σ∗)n, R, S ∈ SR, then R · S and R∗ need not be in SR.

Example

(a, a)∗, (b, ε)∗ and ((a, a) · (a, ε)) are in SR, but

I (b, ε)∗ · (a, a)∗ /∈ SR

I ((a, a) · (a, ε))∗ /∈ SR

Interim summary

What we have showed
These properties allow us to use SR for multitape computing.
However, the main problem remains: standard libraries do not
support more than binary relations.

How we proceed

We will tackle this problem by encoding arbitrary synchronous
rational relations as regular languages.

Outline

Problems of rational relations

Synchronous rational relations

The encoding: synchronous factorizations

The implementation

The encoding: synchronous factorizations

We say a map ψ : (T ∗)n → Σ∗ encodes tuples in strings, if there
are maps φ1, ..., φn such that for all i : 1 ≤ i ≤ n,

φi (ψ(w1, ...,wn)) = wi (1)

Faithfulness
Let R1, ...,Rn be relations, τ be an n-ary operation, ψ be an
encoding. Then we say that the operation τψ faithfully encodes τ ,
if

ψ(τ(R1, ...,Rn)) = τψ(ψ(R1), ..., ψ(Rn)) (2)

This states that we can simulate operations on relations via
operations on their code.

The encoding: synchronous factorizations

Our encoding

It is based on tuple concatenation, but not componentwise:
we defined · by

(a, b) · (c, d) = (ac, bd),

which results in a tuple of strings. To encode tuples as strings, we
form

(a, b)(c, d) (without ·),

which is not a tuple of strings, but rather a string of tuples.

The encoding: synchronous factorizations

Factorization
We say that a string of tuples ~x1...~xi is a factorization of
~y ∈ (Σ∗)n, if

1. ~x1, ..., ~xi ∈ (Σ ∪ ε)n, and

2. ~x1 · ... · ~xi = ~y .

Factorizations are not unique, consider factorizations as (a, ε)(ε, b)
of (a, b).

Synchronous factorization

A factorization ~x1....~xn is synchronous, if the following holds: if
the jth letter of ~xi is ε, then for all m : i ≤ m ≤ n, the jth letter of
~xm is ε.

The synchronous factorization of a tuple is unique, hence we have
a function synfact(~x)

The encoding: synchronous factorizations

We generally put f [X] := {f (x) : x ∈ X}

Lemma
Assume R ⊆ (Σ∗)n. Then R is synchronous rational if and only if
synfact[R] is a regular language.

Example

synfact[((a, a) · (a, ε))∗] = {(a, a)n(a, ε)n : n ∈ N0}, which is
obviously not regular (isomorphic to anbn!).

The encoding: synchronous factorizations

The previous lemma shows the tight relation between SR (of
arbitary arity) and the regular languages. For the rational relations,
we can show that no such encoding exists:

Lemma
There is no rational (i.e. finite-state computable) encoding

ψ : (Σ∗)n → T ∗

such that for all rational relations R, ψ[R] is regular.

This is the main motivation for using SR!

The encoding: synchronous factorizations

Here some faithful encodings of standard operations, given the
encoding via synchronous factorizations.

Standard operations

τ (on relation) τψ (on language)
1. ψ(R ∪ S) ψ(R) ∪ ψ(S)
2. ψ(R ∩ S) ψ(R) ∩ ψ(S)

3. ψ(R) ψ(R) ∩ codeψ
4. ψ(πi (R)) hi [ψ(R)], hi a relabelling

5. ψ(Ci (R)) h−1i (ψ(R)), hi a relabelling
6. ψ(R ◦1 S) π2(C3(ψ(R)) ∩ C1(ψ(S)))
7. ψ(R ⊕1 S) C3(ψ(R)) ∩ C1(ψ(S))
8. R ◦i S generalize 6.
9. R ⊕i S generalize 7.
10.ψ(R−1) h[ψ(R)], h a relabelling.

The encoding: synchronous factorizations

Problem
Our encoding is not faithful for concatenation and Kleene star.
This follows from two facts:

Lemma
If we close the class of synchronous rational relations under
concatenation and Kleene star, we obtain the rational relations.

And:

Lemma
There is no rational encoding ψ : (Σ∗)n → T ∗ such that for all
rational relations R, ψ[R] is regular.

The encoding: synchronous expressions

Still, we want to use concatenation and Kleene star in a restricted
(“safe”) fashion!

I Therefore, we devise a category system for expressions with ·
and ∗.

I Categories tell us, whether an expression can still be guaran-
teed to denote a synchronous relation, and

I for every synchronous rational relation, we have an expression
of a “safe” category!

Note however that in general, it is undecidable whether a rational
expression denotes a relation in SR!

The encoding: synchronous factorizations

We distinguish these categories of rational expressions:

1. el, the equal-length expressions (all components have equal
length, e.g. (a, b, c)∗)

2. ed, the ε-difference expressions, where shorter components are
ε (e.g. (a, ε, c)∗)

3. bd, the bounded length-difference expressions (e.g.
(a, b)∗ · (a, ε))

4. gd, where difference can be unbounded and shorter compo-
nents need not be ε, (e.g. ((a, a)∗ · (b, ε)∗))

5. ⊥, the expressions which are no longer guaranteed to be syn-
chronous

The encoding: synchronous factorizations

We call the expressions of category el , bd , ed , gd the synchronous
rational expressions (SR-expressions); this consequently forms a
(proper) subset of the rational expressions. If we extend these
expressions with constructors for projection, cylindrification and
Boolean operations, we obtain the following:

Lemma
(Soundness) Every extended synchronous rational expression
denotes a synchronous rational relation.

Lemma
(Completeness) For every synchronous rational relation, there is an
extended synchronous rational expression denoting it.

Outline

Problems of rational relations

Synchronous rational relations

The encoding: synchronous factorizations

The implementation

The implementation

The goal of our implementation is to be able to process multi-ary
relations with a standard library, in a transparent way.

user ⇐⇒ interface ⇐⇒ existing FS-library

I We do not implement the standard operations, but use the
ones of the library

I The language used for the input is as close as possible to the
one of the library

I The input is type-checked, and encoded to be processed (or
not) by the library

The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

((a, epsilon , b)∗ (a, c, a)) | (a, c, b)∗

(a, ε, b)∗(a, c , a)

The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

((a, epsilon , b)∗ (a, c, a)) | (a, c, b)∗

(a, ε, b)∗(a, c , a)

The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

((a, epsilon , b)∗ (a, c, a)) | (a, c, b)∗

(a, ε, b)∗(a, c , a)

The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

((a, epsilon , b)∗ (a, c, a)) | (a, c, b)∗

(a, ε, b)∗(a, c , a)

The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

((a, epsilon , b)∗ (a, c, a)) | (a, c, b)∗

(a, ε, b)∗(a, c , a)

The expression does not belong to the class, the process is stopped

The implementation: example (encoding)

For the following input, the type-checking is successful and the
encoding can be given to the library

((a, epsilon , b) (a, c, a)) | (a,c,b)∗

[’concat’ , [(’a’ , ’ epsilon ’ , ’b’)],[(’a’ , ’c’ , ’a’)]]

should be forbidden, but an expression denoting the same language
can be obtained by ε-shifting

[’union’ ,[’concat’ ,[(’a’ , ’c’ , ’b’)],[(’a’ , ’ epsilon ’ , ’a’)]],
[’ star ’ ,[(’a’ , ’c’ , ’b’)]]]

((%[’a’%,’c’%,’b’%] %[’a’%,’ epsilon ’%,’a’%])
|(%[’a’%,’c’%,’b’%])∗)

The implementation: example (encoding)

For the following input, the type-checking is successful and the
encoding can be given to the library

((a, epsilon , b) (a, c, a)) | (a,c,b)∗

[’concat’ , [(’a’ , ’ epsilon ’ , ’b’)],[(’a’ , ’c’ , ’a’)]]

should be forbidden, but an expression denoting the same language
can be obtained by ε-shifting

[’union’ ,[’concat’ ,[(’a’ , ’c’ , ’b’)],[(’a’ , ’ epsilon ’ , ’a’)]],
[’ star ’ ,[(’a’ , ’c’ , ’b’)]]]

((%[’a’%,’c’%,’b’%] %[’a’%,’ epsilon ’%,’a’%])
|(%[’a’%,’c’%,’b’%])∗)

The implementation: example (encoding)

For the following input, the type-checking is successful and the
encoding can be given to the library

((a, epsilon , b) (a, c, a)) | (a,c,b)∗

[’concat’ , [(’a’ , ’ epsilon ’ , ’b’)],[(’a’ , ’c’ , ’a’)]]

should be forbidden, but an expression denoting the same language
can be obtained by ε-shifting

[’union’ ,[’concat’ ,[(’a’ , ’c’ , ’b’)],[(’a’ , ’ epsilon ’ , ’a’)]],
[’ star ’ ,[(’a’ , ’c’ , ’b’)]]]

((%[’a’%,’c’%,’b’%] %[’a’%,’ epsilon ’%,’a’%])
|(%[’a’%,’c’%,’b’%])∗)

The implementation: example (encoding)

For the following input, the type-checking is successful and the
encoding can be given to the library

((a, epsilon , b) (a, c, a)) | (a,c,b)∗

[’concat’ , [(’a’ , ’ epsilon ’ , ’b’)],[(’a’ , ’c’ , ’a’)]]

should be forbidden, but an expression denoting the same language
can be obtained by ε-shifting

[’union’ ,[’concat’ ,[(’a’ , ’c’ , ’b’)],[(’a’ , ’ epsilon ’ , ’a’)]],
[’ star ’ ,[(’a’ , ’c’ , ’b’)]]]

((%[’a’%,’c’%,’b’%] %[’a’%,’ epsilon ’%,’a’%])
|(%[’a’%,’c’%,’b’%])∗)

Conclusion

I Idea: allow users to work with (synchronous) rational rela-
tions of arbitrary arity.

I Method: encoding arbitrary relations as simple languages to
work with existing libraries.

I Problem: cannot work with the full class of rational relations.

I Synchronous rational relations: only concatenation and star
are problematic.

I We presented a class of expressions which denotes all and
only the synchronous rational expressions.

I Practical side: type checker for expressions and implementa-
tion of faithful encoding of operations.

Thank you!

Berstel, J. (1979).
Transductions and Context-free Languages.
Teubner, Stuttgart.

Hulden, M. (2009).
Foma: a finite-state compiler and library.
In Lascarides, A., Gardent, C., and Nivre, J., editors, EACL
2009, 12th Conference of the European Chapter of the As-
sociation for Computational Linguistics, Proceedings of the
Conference, Athens, Greece, March 30 - April 3, 2009, pages
29–32. The Association for Computer Linguistics.

	Problems of rational relations
	Synchronous rational relations
	The encoding: synchronous factorizations
	The implementation

