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Multi-tape Computing with Synchronous Relations

There are many motivations for using multi-tape transducers:

I We want to relate more than two aspects of a language: e.g.
semantics, morphology, phonology, phonetics.

I We want to keep track of intermediate steps in composition
of relations: e.g. in old language reconstruction.

I We want to relate more than two languages.

I ...



Multi-tape Computing with Synchronous Relations

However, multi-ary relations are not usually supported by standard
libraries, and behave differently from binary relations in some ways.

Our solution
Our solution is to encode multi-ary relations as binary/unary
relations.

However, in general, we cannot encode arbitrary rational
(transducer recognizable) relations as unary relations (see below).
But this is possible with the synchronous rational relations (SR).



Multi-tape Computing with Synchronous Relations

Synchronous rational relations are in a sense a largest subclass of
the rational relation, which forms a Boolean algebra.
Hence:

I Closure under intersection, complement (contrary to rational
relations)

I Consequently: decidability inclusion and equivalence of two
relations (contrary to rational relations)

I Closure under generalized (lossless) composition, i.e. match-
ing of one or more components, with and without cancelling
out.



Multi-tape Computing with Synchronous Relations

Problem: Synchronous rational relations are inconvenient to use
for the community:

I Rational expressions (as in FOMA [Hulden, 2009]) do not
allow to characterize SR.

I Solution: we describe a class of expressions which exactly
characterizes SR.



Multi-tape Computing with Synchronous Relations

Problem: Synchronous rational relations are inconvenient to use
for the community:

I (Synchronous) multi-tape relations are not supported by stan-
dard libraries

I Solution: we implement an interface which translates SR-
expressions to regular languages, faithfully encoding all opera-
tions. These can be handled by standard libraries.
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Problems of rational relations

Rational relations
A relation is rational if it is denoted by some rational expression
Fix an arbitrary alphabet Σ and an arbitrary arity n

I for a1, ..., an ∈ Σ ∪ {ε}, (a1, ..., an) is a rational expression
(denoting {(a1, ..., an)})

I if e, f are rational expressions, then so is e · f (denoting com-
ponentwise concatenation of tuples),

I if e, f are rational expressions, then so is e + f (denoting
union)

I if e is a rational expressions, then so is e∗ (denoting 1 + e +
(e · e) + ..., where 1 = {(ε, ..., ε)}



Problems of rational relations

Rational (transducer recognizable) relations are extremely useful in
NLP. This is based on a number of properties:

I Closure under composition

I Closure under union

I Closure under concatenation and Kleene star

Each of these operations is very useful, because it allows to
construct a complex relation by simpler ones by means of the
operations. Closure ensures we still have finite-state transducers
effectively computing the relation.



Problems of rational relations

Problems
Rational relations are not closed under intersection (for proof, see
[Berstel, 1979]), and consequently not under complement.

I libraries as FOMA have a pseudo-intersection operation, but
it is not guaranteed to yield a mathematically correct result

I without intersection and complement, we cannot decide whether
two transducers compute the same relation.

I all existing libraries for transducers and rational relations only
support binary relations
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Synchronous rational relations

Convolution (tuple of strings)

Put Σ⊥ := Σ ∪ {⊥}, for ⊥/∈ Σ.
The convolution of a tuple of strings (w1, ...,wi ) ∈ (Σ∗)i , written
as

⊗(w1, ...,wi ),

is in ((Σ⊥)∗)i and of length max({|wj | : 1 ≤ j ≤ i}), defined as
follows: the kth letter-tuple of ⊗(w1, ...,wi ) is 〈σ1, ..., σi 〉, where
σj is the k-th letter of wj provided that k ≤ |wj |, and ⊥ otherwise.



Synchronous rational relations

Convolution (relation)

The convolution of a relation R ⊆ (Σ∗)i is defined by
⊗R := {⊗(w1, ...,wi ): (w1, ...,wi ) ∈ R}.

Synchronous regular relations

A relation R ∈ (Σ∗)i is synchronous regular, if there is an ε-free
finite-state automaton with transitions labelled by (Σ⊥)i

recognizing ⊗R.

Example

((a, a) · (a, ε))∗ /∈ SR, because no ε-free transducer recognizes

{(a2n, an⊥n) : n ∈ N0}



Why Synchronous rational relations?

Largest natural subclass

The class SR is the largest known natural class smaller than the
rational relations.

Advantages of SR

I SR has a number of important closure properties: composi-
tion, projection, cylindrification (see below)

I In particular, SR is a Boolean algebra, hence inclusion and
equivalence are decidable!

I But: SR is not closed under concatenation and Kleene star!

I We will use the fact there is an interesting correlation be-
tween SR and the regular languages.



Synchronous rational relations: operations

Projection

We define for i ≤ n, R ⊆ (Σ∗)n,
πi (R) = {(w1, ...,wi−1,wi+1, ...,wn) : (w1, ...,wn) ∈ R}

Cylindrification

For i ≤ n + 1, R ⊆ (Σ∗)n,
Ci (R) = {(w1, ...,wi−1, v ,wi , ...,wn) : v ∈ Σ∗, (w1, ...,wn) ∈ R}

Homomorphisms

h : (Σ∗)n → (T ∗)n is a homomorphism, if
h(w1, ...,wn) = (h(w1), ..., h(wn)), and h(aw) = h(a)h(w).
h is a relabelling, if a ∈ Σ implies h(a) ∈ T .



Synchronous rational relations: operations

Composition and generalized composition

These operations are not among the standard finite-state
operations. But: together with Boolean operations, they allow to
define

I Relation composition ((a, b) ◦ (b, c) 7→ (a, c))

I Lossless relation composition ((a, b)⊕ (b, c) 7→ (a, b, c))

I Generalized composition of relations of higher arity (matching
more than one component, e.g. (a, b, c) ◦2 (b, c , d) 7→ (a, d))

I Same for lossless composition e.g.
(a, b, c)⊕2 (b, c , d) 7→ (a, b, c , d))



Synchronous rational relations

Closure properties of SR

1. Boolean closure: f R,S ⊆ (Σ∗)n, R, S ∈ SR, then (Σ∗)n −
R,S ∪ R, S ∩ R ∈ SR.

2. Projection/Cylindrification: If R ⊆ (Σ∗)n, R ∈ SR, then
πi (R),Ci (R) ∈ SR.

3. Generalized (lossless) composition: If R ⊆ (Σ∗)m, S ⊆ (Σ∗)n,
o ≤ m, n, then if R,S ∈ SR, then R ◦o S ,R ⊕o S ∈ SR.

4. Relabelling: If R ∈ SR, h a relabelling, then h[R] ∈ SR. If h
a homomorphism, then h[L] ∈ R (the rational relations).



Synchronous rational relations

Problem: concatenation and star
SR lacks closure under concatenation and Kleene star
if R, S ⊆ (Σ∗)n, R, S ∈ SR, then R · S and R∗ need not be in SR.

Example

(a, a)∗, (b, ε)∗ and ((a, a) · (a, ε)) are in SR, but

I (b, ε)∗ · (a, a)∗ /∈ SR

I ((a, a) · (a, ε))∗ /∈ SR



Interim summary

What we have showed
These properties allow us to use SR for multitape computing.
However, the main problem remains: standard libraries do not
support more than binary relations.

How we proceed

We will tackle this problem by encoding arbitrary synchronous
rational relations as regular languages.
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The encoding: synchronous factorizations

We say a map ψ : (T ∗)n → Σ∗ encodes tuples in strings, if there
are maps φ1, ..., φn such that for all i : 1 ≤ i ≤ n,

φi (ψ(w1, ...,wn)) = wi (1)

Faithfulness
Let R1, ...,Rn be relations, τ be an n-ary operation, ψ be an
encoding. Then we say that the operation τψ faithfully encodes τ ,
if

ψ(τ(R1, ...,Rn)) = τψ(ψ(R1), ..., ψ(Rn)) (2)

This states that we can simulate operations on relations via
operations on their code.



The encoding: synchronous factorizations

Our encoding

It is based on tuple concatenation, but not componentwise:
we defined · by

(a, b) · (c, d) = (ac, bd),

which results in a tuple of strings. To encode tuples as strings, we
form

(a, b)(c, d) (without ·),

which is not a tuple of strings, but rather a string of tuples.



The encoding: synchronous factorizations

Factorization
We say that a string of tuples ~x1...~xi is a factorization of
~y ∈ (Σ∗)n, if

1. ~x1, ..., ~xi ∈ (Σ ∪ ε)n, and

2. ~x1 · ... · ~xi = ~y .

Factorizations are not unique, consider factorizations as (a, ε)(ε, b)
of (a, b).

Synchronous factorization

A factorization ~x1....~xn is synchronous, if the following holds: if
the jth letter of ~xi is ε, then for all m : i ≤ m ≤ n, the jth letter of
~xm is ε.

The synchronous factorization of a tuple is unique, hence we have
a function synfact(~x)



The encoding: synchronous factorizations

We generally put f [X ] := {f (x) : x ∈ X}

Lemma
Assume R ⊆ (Σ∗)n. Then R is synchronous rational if and only if
synfact[R] is a regular language.

Example

synfact[((a, a) · (a, ε))∗] = {(a, a)n(a, ε)n : n ∈ N0}, which is
obviously not regular (isomorphic to anbn!).



The encoding: synchronous factorizations

The previous lemma shows the tight relation between SR (of
arbitary arity) and the regular languages. For the rational relations,
we can show that no such encoding exists:

Lemma
There is no rational (i.e. finite-state computable) encoding

ψ : (Σ∗)n → T ∗

such that for all rational relations R, ψ[R] is regular.

This is the main motivation for using SR!



The encoding: synchronous factorizations

Here some faithful encodings of standard operations, given the
encoding via synchronous factorizations.

Standard operations

τ (on relation) τψ (on language)
1. ψ(R ∪ S) ψ(R) ∪ ψ(S)
2. ψ(R ∩ S) ψ(R) ∩ ψ(S)

3. ψ(R) ψ(R) ∩ codeψ
4. ψ(πi (R)) hi [ψ(R)], hi a relabelling

5. ψ(Ci (R)) h−1i (ψ(R)), hi a relabelling
6. ψ(R ◦1 S) π2(C3(ψ(R)) ∩ C1(ψ(S)))
7. ψ(R ⊕1 S) C3(ψ(R)) ∩ C1(ψ(S))
8. R ◦i S generalize 6.
9. R ⊕i S generalize 7.
10.ψ(R−1) h[ψ(R)], h a relabelling.



The encoding: synchronous factorizations

Problem
Our encoding is not faithful for concatenation and Kleene star.
This follows from two facts:

Lemma
If we close the class of synchronous rational relations under
concatenation and Kleene star, we obtain the rational relations.

And:

Lemma
There is no rational encoding ψ : (Σ∗)n → T ∗ such that for all
rational relations R, ψ[R] is regular.



The encoding: synchronous expressions

Still, we want to use concatenation and Kleene star in a restricted
(“safe”) fashion!

I Therefore, we devise a category system for expressions with ·
and ∗.

I Categories tell us, whether an expression can still be guaran-
teed to denote a synchronous relation, and

I for every synchronous rational relation, we have an expression
of a “safe” category!

Note however that in general, it is undecidable whether a rational
expression denotes a relation in SR!



The encoding: synchronous factorizations

We distinguish these categories of rational expressions:

1. el, the equal-length expressions (all components have equal
length, e.g. (a, b, c)∗)

2. ed, the ε-difference expressions, where shorter components are
ε (e.g. (a, ε, c)∗)

3. bd, the bounded length-difference expressions (e.g.
(a, b)∗ · (a, ε))

4. gd, where difference can be unbounded and shorter compo-
nents need not be ε, (e.g. ((a, a)∗ · (b, ε)∗))

5. ⊥, the expressions which are no longer guaranteed to be syn-
chronous



The encoding: synchronous factorizations

We call the expressions of category el , bd , ed , gd the synchronous
rational expressions (SR-expressions); this consequently forms a
(proper) subset of the rational expressions. If we extend these
expressions with constructors for projection, cylindrification and
Boolean operations, we obtain the following:

Lemma
(Soundness) Every extended synchronous rational expression
denotes a synchronous rational relation.

Lemma
(Completeness) For every synchronous rational relation, there is an
extended synchronous rational expression denoting it.
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The implementation

The goal of our implementation is to be able to process multi-ary
relations with a standard library, in a transparent way.

user ⇐⇒ interface ⇐⇒ existing FS-library

I We do not implement the standard operations, but use the
ones of the library

I The language used for the input is as close as possible to the
one of the library

I The input is type-checked, and encoded to be processed (or
not) by the library



The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

( (a, epsilon , b)∗ (a, c, a) ) | (a, c, b)∗

(a, ε, b)∗(a, c , a)
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The implementation: example (type-checking)

The following input has to be ruled out by the type-checker:

( (a, epsilon , b)∗ (a, c, a) ) | (a, c, b)∗

(a, ε, b)∗(a, c , a)

The expression does not belong to the class, the process is stopped



The implementation: example (encoding)

For the following input, the type-checking is successful and the
encoding can be given to the library

( (a, epsilon , b) (a, c, a) ) | (a,c,b)∗

[ ’concat’ , [( ’a’ , ’ epsilon ’ , ’b’ )],[( ’a’ , ’c’ , ’a’ )] ]

should be forbidden, but an expression denoting the same language
can be obtained by ε-shifting

[ ’union’ ,[ ’concat’ ,[( ’a’ , ’c’ , ’b’ )],[( ’a’ , ’ epsilon ’ , ’a’ )] ],
[ ’ star ’ ,[( ’a’ , ’c’ , ’b’ )] ] ]

((%[’a’%,’c’%,’b’%] %[’a’%,’ epsilon ’%,’a’%])
|( %[’a’%,’c’%,’b’%] )∗)
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The implementation: example (encoding)
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The implementation: example (encoding)

For the following input, the type-checking is successful and the
encoding can be given to the library

( (a, epsilon , b) (a, c, a) ) | (a,c,b)∗

[ ’concat’ , [( ’a’ , ’ epsilon ’ , ’b’ )],[( ’a’ , ’c’ , ’a’ )] ]

should be forbidden, but an expression denoting the same language
can be obtained by ε-shifting

[ ’union’ ,[ ’concat’ ,[( ’a’ , ’c’ , ’b’ )],[( ’a’ , ’ epsilon ’ , ’a’ )] ],
[ ’ star ’ ,[( ’a’ , ’c’ , ’b’ )] ] ]

((%[’a’%,’c’%,’b’%] %[’a’%,’ epsilon ’%,’a’%])
|( %[’a’%,’c’%,’b’%] )∗)



Conclusion

I Idea: allow users to work with (synchronous) rational rela-
tions of arbitrary arity.

I Method: encoding arbitrary relations as simple languages to
work with existing libraries.

I Problem: cannot work with the full class of rational relations.

I Synchronous rational relations: only concatenation and star
are problematic.

I We presented a class of expressions which denotes all and
only the synchronous rational expressions.

I Practical side: type checker for expressions and implementa-
tion of faithful encoding of operations.



Thank you!
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